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Cristóbal De La Maza (cdelamaz@andrew.cmu.edu)1

Alex Davis (alexdavis@cmu.edu)1

Cleotilde Gonzalez (coty@cmu.edu)2

Inês Azevedo (iazevedo@cmu.edu)1

1Department of Engineering and Public Policy
2Department of Social and Decision Sciences

Carnegie Mellon University, Pittsburgh, PA 15213 USA

September 21, 2019

Approaches that elicit preference from individual choices often assume that
all decision-makers know what they want. That is true if every decision-maker
can consistently order the available alternatives, yielding transitive preferences.
We propose that decision-makers may be heterogeneous in their preference
structure, then cluster decision-makers based on structural heterogeneity us-
ing recent advances in graph matching and non-linear embeddings. We char-
acterize heterogeneity of both the content and structure of preferences using
two pairwise comparison experiments: the first a classic study of risky choice
and the second a two-attribute study about CO2 mitigation. Decision-makers
frequently choose in a way consistent with transitivity, yet some decision-makers
make choices consistent with heuristic rules. Furthermore, some participants
appear to be uncertain about their preferences, exhibiting violations of transi-
tivity. As a generalization of traditional preference analysis, our approach can
be used to make recommendations for those with consistent preferences, un-
cover complex choice rules, and suggest paths towards clarification for those
who are uncertain.
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1 Introduction

The recent emergence of large amounts of data on individual choices, from product purchases

in online marketplaces, to voting in local or national elections, has led to the development of

sophisticated statistical models that aim to understand the determinants of individual choice

(Anderson & Lebiere, 2014). For example, many recommender systems use the similarity

of individuals’ past choices to make suggestions about products (Goldberg, Roeder, Gupta, &

Perkins, 2001), estimates of the value of a statistical life are modeled using econometric estimates

of the compensation individuals require in exchange for doing a job that has a higher risk of

death (Viscusi & Aldy, 2003; Alberini, Hunt, & Markandya, 2006; Hammitt, 2000), and votes

are tallied under the assumption that each vote contains a well-defined expression of the voter’s

preference (Roberts, 1980).

In these important choice situations there could be as many decision rules as there are

decision-makers. Such heterogeneity cannot be captured with existing modeling approaches. For

example, the mixed logit model assumes that decision-makers all use the same decision rule,

varying on the degree to which individuals weight different attributes (McFadden & Train, 2000).

Latent class models, on the other hand, assume that decision-makers use different decision

rules, but require that those decision rules are known ahead of time, potentially missing patterns

not previously considered (Greene & Hensher, 2003). New methods are required to uncover

heterogeneity in decision rules across large populations of decision-makers (McFadden, 2001).

There are two ways to capture preference heterogeneity. The first examines whether decision-

makers choose the same alternatives, or whether they have the same preference content. A

decision-maker who chooses political candidate A over B and B over C has the same preference

content as another that chooses A over B and B over C. The second type of heterogeneity

is about the relationships between the things that are chosen, or the preference structure. A
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decision-maker that chooses A over B, B over C, and A over C has the same structure as a

decision-maker that chooses C over B, B over A, and C over A, because both decision-makers

have transitive preferences, even though their preference content differs. Prior work typically

restricts preference heterogeneity analysis to differences in preference content.

Individual choice behavior reveals preferences that are consistent with utility maximization

only if decision-makers can order all the available alternatives (Von Neumann & Morgenstern,

1944; Arrow, 1951), and are not susceptible to subtle but inconsequential changes in how the

alternatives are described or presented (framing effects, context effects, reference dependence)

(Tversky & Kahneman, 1981; Bhatia, 2013). If these conditions hold, it is possible to define a

rank ordering of the alternatives according to the decision-maker’s preferences, and there exists

an ordinal utility function corresponding to that ranking. Researchers in the decision sciences

have found that, in many circumstances, preferences are not always well-behaved (Tversky &

Kahneman, 1981; Bhatia, 2013). One reason for these deviations is that the burden of selecting

the best alternative among a large set, where considering the potential costs and benefits of each

alternative, is too difficult (Fischhoff, 2005), forcing individuals to use short-cuts or heuristics to

make their choices (Simon, 1972; Gigerenzer & Todd, 1999; Payne, Bettman, & Johnson, 1993).

One plausible way to deal with complex choices is to use only the most important attribute unless

the alternatives are psychologically indistinguishable on that attribute. Tversky’s lexicographic

semiorder is such a process, but there is both theoretical and empirical evidence that choice by

lexicographic semiorder can be intransitive (Tversky, 1969).

In simple decisions, for example between two alternatives, each with two attributes, cognitive

overload is less likely to occur. However, decision-makers may still behave in a manner that is

inconsistent with utility maximization if they are unsure about what they want. For example, a

prospective homeowner may begin searching based on square footage, but, after touring a few

homes, decide that the number of full bathrooms is the more important attribute. Such changes
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in decision rules will lead to inconsistent choices and an inability to construct a proper ranking

over alternatives. If that inconsistency arises from random fluctuations in preference, there is a

substantial literature around stochastic transitive preferences that can be used to model choice

data (Marschak, 1959; Davis-Stober, 2009). If inconsistency arises only in the short-run, then

giving decision-makers more time or more opportunities to choose will lead to stable preferences

(Busemeyer & Townsend, 1993). Yet not all choice inconsistencies can be characterized as

random deviations from well-ordered preferences or failures to reach long-run stability (Tversky

& Kahneman, 1981; Bhatia, 2013).

We introduce a new approach that classifies decision-makers into discrete groups based on

the pattern of their choices, without having to specify the decision rules used by those groups

ahead of time. This approach allows clusters of decision-makers with similar preference patterns

to emerge, even when those patterns are inconsistent with prior behavioral theories, potentially

improving choice prediction, and suggesting new theories to researchers. Tests of structural

properties of preference, such as weak stochastic transitivity, can then be conducted within

each cluster (Regenwetter et al., 2014). The approach extends prior work on non-parametric

preference clustering that focuses on preference content (Brown, Park, Steinley, & Davis-Stober,

2018), by clustering based on both the content and structure of decision-maker preferences. In

what follows we describe the method and apply the approach across two experiments to classify

decision-makers into homogeneous preference groups. The next section describes the method in

detail.

2 Discovering preference structure

To cluster decision-makers based on their preferences, we first represent individual choices

as preference graphs, then compute the distance between preference graphs for a sample of

decision-makers, embed these distances into a lower dimensional space, and finally cluster
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decision-makers based on these embeddings to propose a decision rule for each cluster. Figure 1

summarizes the four steps for a simulated sample of 100 decision-makers.

Figure 1: Method summary. The scheme summarizes our method four steps for a simulated
sample of 100 decision-makers. First, we represent choices as preference graphs. Next, we
compute dissimilarities on both content and structure. Further, we estimate a lower dimensional
embedding for each dissimilarity matrices. Finally, we find clustering allocations.

2.1 Preference representation as graphs

First, we represent sequences of individual choices for a single decision-maker as a preference

graph G = (V,E) (see step 1 in Figure 1), which consists of a set of vertices V and edges E

where vertices represent alternatives and edges represent binary preference relations between

alternatives, as illustrated in Figure 2. For all pairs of alternatives a and b, one and only one

of the following three preference relations holds (Bouyssou & Vincke, 2010): i) if a � b, the

decision maker strictly prefers a over b, then there is a directed edge a→ b and not b→ a in

the graph (strict preference or aPb). ii) If a ∼ b, the decision maker is indifferent between a
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and b, then a and b are connected by an undirected edge a−b (indifference or aIb). iii) If a is

incomparable with b, then no edge between a and b exists (incomparability or aJb). Although

the preference graph representation is quite general, we focus on tournaments (Moon, 2015),

where all alternatives are compared and all preference relations are strict. The four types of

tournament structures possible for four alternatives are shown in Figures 2a, 2b, 2c, and 2d

(Davis, 1954). Preference graphs can also be represented in terms of their adjacency matrices A,

where each cell Ai j in the matrix is a 1 if alternative i is strictly preferred to j, and 0 otherwise.

Adjacency matrices are shown in Figures 2e, 2f, 2g, and 2h, with reflexive preferences (along the

main diagonal) omitted.

To examine their structure, preference graphs can be unlabeled and oriented such that

alternatives with a higher score are placed closer to the top, where the score for an alternative is

the number of times it is preferred to each other alternative (Moon, 2015). Arrows are omitted

when going from top to bottom in the graph if transitivity holds, and curved upward arrows show

transitivity violations. With four alternatives, the maximum score is 3 (an alternative that is

preferred to all others), and the minimum is zero (an alternative preferred to no others). A score

vector of s = [3,2,1,0] is a complete ranking of the alternatives, or a chain, shown in Figure 2i,

and is consistent with classical utility maximization (Varian, 1983; Afriat, 1972). In contrast, the

lexicographic semiorder is a preference graph that can contain cycles (Tversky, 1969), such as

those shown in Figures 2j, 2k, and 2l, where the exact structure of the cycle is determined by the

alternatives and their attributes.

The value of the preference graph approach is apparent when considering the decision analysis

that an individual with each preference structure must undertake. Given a choice between any

subset of four alternatives, a decision-maker with a chain provides a ranking consistent with the

global ranking over four alternatives. A decision-maker with a cycle at the top can consistently

rank only the worst alternative, and likewise, the decision-maker with a cycle at the bottom can
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Figure 2: Tournament graphs for four alternatives. First row, preference graphs. Second row,
adjacency matrices. Third row, unlabeled tournament structures over four alternatives can be
defined by their score vectors: chain (s = [3,2,1,0]) (i), cycle at bottom (s = [3,1,1,1]) (j), cycle
at top (s = [2,2,2,0]) (k), long cycle (s = [2,2,1,1]) (l). Adjacency matrices show ones in black
and zeros in grey.

consistently rank only the best alternative. A decision-maker with the long cycle has a consistent

ranking over any subset of three alternatives, but no global ranking over all four.

The preference graph representation uses binary relations (0’s and 1’s) to represent preference

between two alternatives. The representation can be extended to weighted edges (in the unit

interval [0, 1]) if choice probabilities are available. Those binary choice probabilities could
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be elicited from an individual (through repeated choices), or by aggregating binary preference

graphs from many individuals who have the same preference content and structure. We use the

latter weighted graph approach to represent clusters of decision-makers.

2.2 Graph matching and dissimilarity estimation

Our primary analytical tool, depicted in Step 2 of Figure 1, is a method of calculating the distance

between graphs. As described in the next two sections, we calculate this distance for both the

labeled graph (representing the content of preferences), and unlabeled graph (representing the

preference structure).

2.2.1 The content of preferences

A common distance metric between two graphs G1 = (V1,E1) and G2 = (V2,E2), is the minimum

number of edges that need to be rearranged to make them equal, known as the Hamming distance

dH(G1,G2) = ||vec(G1)− vec(G2)||1 (Hamming, 1950). Decision-makers that have a small

Hamming distance between their preference graphs tend to choose similar alternatives, or have

similar preference content. For a sample of n individuals, the dissimilarity between all pairs of

decision-makers can be represented in an n×n dissimilarity matrix D, where Di j contains the

Hamming distance between the preference graphs of decision-maker i and decision-maker j.

We use standard graph similarity tools to identify clusters of graphs with similar content, which

in the case of ordinal multidimensional scaling, is equivalent to Coombs’ multidimensional

unfolding (Coombs & Kao, 1960) and closely related to the approach proposed by Brown et al.

(Brown et al., 2018) who focus on preference content.

2.2.2 The structure of preferences

Preference structure cannot be obtained from these Hamming distance calculations. A chain

graph A→ B→C has the same structure as the chain graph C→ B→ A, but their Hamming
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distance is equal to the number of distinct pairs (3). To capture the notion of structure, we

use a measure of the structural distance between two preference graphs, which will be zero

if and only if two preference graphs are isomorphic (Aflalo, Bronstein, & Kimmel, 2015),

meaning there is a bijection f : V1→V2 such that the edges of all pairs of vertices u,v ∈V1 in

G1 have the same edges for f (u), f (v) ∈ V2 in G2 (and vice versa). The automorphism group

Aut(G) of a graph G contains all the graphs that are isomorphic to it (Babai & Luks, 1983),

making it possible to test whether two graphs are isomorphic by determining whether their

automorphism groups intersect. This is a well studied problem in computer science, called the

graph isomorphism problem (Babai & Luks, 1983). The minimum Hamming distance between

two graphs across their automorphism groups then gives their structural distance dS (Butts &

Carley, 2005): dS(G1,G2) = min(dH(Aut(G1),Aut(G2))). If two graphs are similar (but not

isomorphic), their structural distance should be small. Without this isomorphism step, two

decision-makers who make similar choices, but one is intransitive and the other is not, have a

chance of being classified similarly. This is because in many cases one only needs to reverse

a few edges in an intransitive graph to make it transitive. Including the distance between two

graphs over their isomorphisms emphasizes the structural component of preference.

With a few alternatives the structural distance between graphs can be quickly calculated

using exhaustive search. However, the problem is NP-hard (Aflalo et al., 2015), requiring

approximation techniques for large graphs with more than 8 alternatives. We recast the structural

distance calculation as an inexact graph matching problem (Livi & Rizzi, 2013), where the

objective is to find the permutation matrix P∗ over the set of permutations that makes two

adjacency matrices A1 and A2 as similar as possible. The objective function is (Aflalo et al.,

2015; Livi & Rizzi, 2013; Vogelstein et al., 2015):

P∗ = argmin
P∈P

f (P) = disA1→A2(P) = ||A1−PT A2P|| (1)
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where A1,A2 are the adjacency matrices for the preference graphs of two decision-makers, and

P is in the set of permutation matrices P . If the squared Frobenius (L2) norm is used, the problem

is know as quadratic assignment (QAP) with non-deterministic polynomial time complexity

(Koopmans & Beckmann, 1957). Because the solution set P is not convex, a common approach

is to replace P by its convex hull D , the set of doubly stochastic matrices (all entries greater than

equal to zero and each row and column sums to 1). This relaxation leads to a quadratic program

(QCV), solvable in polynomial time (Liu, Qiao, Jia, & Xu, 2014; Aflalo et al., 2015). Because

this relaxation can lead to inaccurate results (Aflalo et al., 2015), we instead use Vogelstein’s

approach (rGM) (Vogelstein et al., 2015) that replaces the objective function f (P) by the identity

−tr(A1PAT
2 PT ), leading to a non-convex problem, where ∇2 f (P) = B⊗A1 +AT

2 ⊗AT
1 is not

positive definite (Vogelstein et al., 2015). Vogelstein et al. proposed to solve this problem

sequentially with Frank-Wolfe algorithm (Frank & Wolfe, 1956; Vogelstein et al., 2015). We

initialized the optimization with the QCV solution (Lyzinski et al., 2016).

2.3 Lower dimensional dissimilarity embedding

In step 3 in Figure 1, we embed preference graph dissimilarities into a lower dimensional space,

taking a very high dimensional similarity matrix across all decision-makers (e.g., a 200×200

matrix for 200 decision-makers) and summarizing that matrix with only a few dimensions.

The embedding enables subsequent clustering techniques, helping avoid too many clusters and

thus overestimation of heterogeneity. For n decision-makers, the n×n matrix DH of pairwise

Hamming distances contains information about the content of decision-maker preferences, while

the matrix DS of pairwise structural distances carries information about their structure. Our

approach aims to classify decision-makers into groups with similar preference content and struc-

ture simultaneously, so in step 3 in Figure 1, we first embed DH and DS into lower dimensional

spaces with dimension n×d1 and n×d2, respectively, then concatenate the embeddings into an
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n×d matrix D that carries information about both the content and structure of preference, where

d = d1 +d2. To construct the embeddings, we convert dissimilarities in DH and DS to values

between zero and one using a radial basis kernel, with σH and σS fixed at the median of the

respective dissimilarities (Kevin, 2012; Karatzoglou, Smola, Hornik, & Zeileis, 2004). Next we

train an autoencoder to embed each n×n kernel dissimilarity matrix into an n×d1 and n×d2

space (Goodfellow, Bengio, & Courville, 2016), seeking to minimize the reconstruction error:

min
W,b,c

L(x) =−∑
j

x j log(x̂ j)+(1− x j) log(1− x̂ j)

The autoencoder encodes the input space x into a lower dimensional space h(x) at its output

layer, then reconstructs (decodes) the original input space as x̂(h) (Goodfellow et al., 2016).

We used the non-linear sigmoid activation function for both the encoder h(x) =Wx+b and the

decoder x̂ =Wh+ c, where W is a matrix with weights and b and c are bias vectors. We used a

0.1 learning rate and 1,000 epochs. In Figure 3, we show the autoencoder network. We selected

the number of dimensions in the embedding d using at elbow point of the loss function, and

we pretrained the autoencoder with a Restricted Boltzmann Machine (Hinton & Salakhutdinov,

2006; Wang, Yao, & Zhao, 2016).

Figure 3: Autoencoder summary. Each original dissimilarity matrix is encoded into a lower
dimensional space minimizing reconstruction error (Wang et al., 2016).
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2.4 Clustering allocation and merging

Next, we cluster decision-makers based on dissimilarity embeddings (see step 4 in Figure 1). We

use clustering techniques on the n×d dissimilarity embedding matrix, with the main assumption

being that decision-makers with small distances between each other indicate a common pattern of

preference in a population of decision-makers, partially masked by noise. We use the k-medians

algorithm to determine cluster allocation (Singh, Yadav, & Rana, 2013), solving the following

optimization problem:

min
µ,C

J(γ,µ) =
n

∑
i

k

∑
j

γi j||xi−µ j||1

We initialized the algorithm with centroids from a prior hierarchical k-means solution (Hartigan

& Wong, 1979; Lucas, 2014; Arai & Barakbah, 2007). Here γ is a binary allocation matrix, k is

the apriori defined number of clusters, C is the cluster allocation, and µ the vector with medians

for each group. We used the gap-statistic to determine the number of clusters k (Tibshirani,

Walther, & Hastie, 2001). If necessary, clusters are merged to provide a more general solution.

2.5 Within-cluster modeling and prediction

Lastly, also in step 4 in Figure 1, to understand the choice rules decision-makers use within each

cluster, we take a simple modeling approach, allowing us to compare within-cluster behavior

to prior work. We use the multinomial logit (MNL) model to approximate decision rules

within each cluster. The MNL model assumes the probability that an individual in cluster q

chooses alternative i ∈ J is Piq = eViq

∑ j∈J eVjq
where Viq = ∑l βlq× xl is a (usually linear) utility

function (McFadden, 1973), with x a vector of attributes and l an index for the elements of x.

We tested both multi-attribute (compensatory) and single attribute (non-compensatory) utility

functions, where other attributes are disregarded. We use the logit model as a simple way

to summarize the differences between the groups rather than an accurate description of their

decision process, which would require complicated (and possibly unknown) parametric functions.
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Another reason we use the logit model is to highlight potential bias from aggregating across

clusters, where coefficients that differ strongly across clusters would change conclusions if

inappropriate aggregation is used across clusters.

We predict out-of-sample choices using a mixture of the within-cluster multinomial logit

models, where the choice of alternative i ∈ J has a probability Pi = ∑q πqPiq, with πq as the

probability that an individual belongs to cluster q. In a purely predictive approach, where no

information about a decision-maker m’s choices are available, predictions about the new decision-

maker’s behavior are simply the weighted average behavior of individuals within each cluster in

the training sample, where cluster weights πq are the in-sample proportion of individuals in each

cluster. If T choices for the new decision-maker m are available, then we can place more weight

on the clusters that are most consistent with the decision-maker’s behavior using Bayes’ Rule:

πq|T = P(m ∈ q|T ) = ∏t∈T Ptq×πq

∑q ∏t∈T Ptq×πq

Predictions about a new decision-maker’s choices are also a weighted average, but where the

weights are posterior probabilities Pi|T = ∑q πq|T Piq given the decision-maker’s T choices.

3 Empirical analysis

To test our method, we collected choice data from Amazon Mechanical Turk (MTurk) workers

for two stated preference tasks: 1) choices between two risky options based on a classic study by

Tversky (Tversky, 1969) (transitivity task), and 2) choices between electricity generation options

for one’s state that trade-off CO2 emissions and electricity bill impacts (Sergi, Davis, & Azevedo,

2018) (CO2 task). Prior work has found that data from the MTurk platform is comparable to

laboratory experiments (Crump, McDonnell, & Gureckis, 2013). For both tasks, attributes were

presented graphically. Figure 4 shows an example of each choice task.

For each task, we recruited 200 MTurk participants with inclusion criteria: age of at least 18
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(a) Transitivity task

(b) CO2 task
Figure 4: Choice set examples in each task. Transitivity task: Choice set example alternative b
vs. c in Table 1(a). CO2 task: Choice set example a vs. b in Table 1(a).

years, IP address in the U.S. and completion of more than 100 hits with an approval rate of 95% or

higher. A full version of the questionnaires and survey data is available online (osf.io/pf7jn). We

provided a payment of $1 per participant and a $0.5 bonus if the participant answered an attention

check correctly. The attention question was a choice set with a deterministically dominated

alternative. Table 1(a), presents the selected alternatives for each experiment. Problems for the

transitivity task were based on gambles from (Tversky, 1969). Problems for the CO2 task were

based on alternatives from (Sergi et al., 2018). Participants were presented with all pairs of

alternatives. Table 1(b) and Table 1(c) presents each pair of problems represented in adjacency
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matrix form.

Table 1: Alternatives selected for the experimental tasks and problem ID in adjacency matrix.
Problems for the transitivity task based on gambles from (Tversky, 1969). Problems for the CO2
task based on alternatives from (Sergi et al., 2018).

(a) Alternatives selected

Transitivity task CO2 task

Probability Payoff ($) Expected Value ($) CO2 Bill

a 7/24 5.00 1.458 -30% 20%
b 8/24 4.75 1.583 -30% 5%
c 9/24 4.50 1.688 -25% 4%
d 10/24 4.25 1.771 -20% 3%
e 11/24 4.00 1.833 -15% 2%
f 12/24 3.75 1.875 -10% 1%
g 13/24 3.50 1.894 30% -20%
h 14/24 3.25 1.895 30% -5%
i 15/24 3.00 1.875
j 16/24 2.75 1.833

(b) Transitivity task

a b c d e f g h i j



1 2 3 4 5 6 7 8 9 a
10 11 12 13 14 15 16 17 b

18 19 20 21 22 23 24 c
25 26 27 28 29 30 d

31 32 33 34 35 e
36 37 38 39 f

40 41 42 g
43 44 h

45 i
j

(c) CO2 task

a b c d e f g h



1 2 3 4 5 6 7 a
8 9 10 11 12 13 b

14 15 16 17 18 c
19 20 21 22 d

23 24 25 e
26 27 f

28 g
h
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3.1 Transitivity in risky choices

In the transitivity task, participants chose between the pairs of gambles included in Table 1(a),

from Tversky’s classic paper on intransitive preferences (a-e) (Tversky, 1969), along with five

additional gambles (f-j), where last two gambles a higher probability is negatively correlated

with a higher expected value. As shown in Table 1(b), participants were presented all pairs from

10 alternatives (45 pairs in total), with three repetitions for each pair (in a randomized order),

yielding a total of 135 choices per participant. Almost all participants (95%) passed the attention

check questions and were provided with the bonus payment .

Using our approach, we identify six clusters: four with chain structures, one with a small

cycle, and one with multiple cycles. Figure 5a shows the expected adjacency matrices for the

preference graphs in each cluster, where alternatives are arranged so a lower triangular adjacency

matrix indicates choices based strictly on probabilities, and an upper triangular adjacency matrix

indicates choices based strictly on payoffs. Significant heterogeneity can be seen in both the

content of preferences (with most choosing based only on payoffs), and the structure (with

clusters 1-4 showing clear chain structures, and clusters 5-6 with one or more intransitive cycles).

Figure 5b shows the predicted probabilities from the logistic regressions that fit the data

the best in each cluster. For details refer to Table 2(a) in the appendix section, where we test

three decision rules to explain decision-maker choice behavior in each cluster: 1) maximize

expected value Vi1 = β1×EVi, 2) maximize probability of winning Vi2 = β2×P(winning)i, 3)

and maximize payoffs Vi3 = β3×Payoffi.

We find that for clusters 1-4, a decision rule based on a single attribute (either probabilities

or payoffs) fit the data better than an expected value rule. Decision-makers in clusters 1, 2

and 3 preferred the alternative with a higher probability in 87%, 96% and 100% of choices

(respectively). Decision-makers in cluster 4 almost always choose the alternative with the higher

payoff (93% of the time). Although decision-makers in cluster 5 and 6 show a cyclic structure, the
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Cluster 1 (13%) Cluster 2 (22%) Cluster 3 (30%) Cluster 4 (9%) Cluster 5 (10%) Cluster 6 (16%)

a) Expected adjacency matrix per cluster

b) Logit probabilities c) Model accuracy

Figure 5: Clustering results transitivity task. First row, weighted expected adjacency matrix
in each cluster for the transitivity task. We used a color scale to easy ease interpretation with
adjacency matrices colored from one in darker tones and zeros in lighter tones. We also present
moon graphs to explicitly differentiate preference structure. The proportion of the sample in each
cluster is presented last. Second row on left, logit probabilities P(A) of choosing the alternative
with a higher probability of winning (A) per cluster. Second row on right, model accuracy on
1,000 bootstrapped samples as more choices are observed from participants. Observed choice
sets are order according with their mutual observation with respect to a vector with the cluster
assignments.
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proportion of choices favoring the option with the higher probability of winning is significantly

different from 50%, suggesting their choices were not entirely random.

Figure 5c shows that using a mixture of multinomial logit models based on our clustering

approach performs as well as a pooled multinomial logit model fit on all the data, when no

choices for a decision-maker are observed. However, prediction accuracy rapidly improves

for our mixture approach when just a few choices are observed, because those choices sort

individuals into clusters with common preference content and structure. In sum, the majority of

decision-makers in the sample use a single-attribute choice rule (clusters 1-4), simplifying the

task, and leading to transitive preferences within-cluster. Decision-makers whose choices can

not be easily explained by a single attribute are also more likely to have intransitive preferences

(clusters 5 and 6).

3.2 Preferences for CO2 emission reductions

Policy-focused researchers have used multi-attribute discrete choice models to estimate policy-

relevant quantities, such as the market share of existing and new products (Herriges & Kling,

1999; Greene, 2012), substitution patterns (Hensher, Rose, & Greene, 2015), implicit discount

rates (Min, Azevedo, Michalek, & de Bruin, 2014), willingness-to-pay (McFadden, 1999;

Helveston et al., 2015), and consumer’s surplus (Small & Rosen, 1981; Williams, 1977). In the

CO2 task, we collected data based on a recent paper by Sergi et al. (Sergi et al., 2018), who

elicit preferences for CO2 emission reductions. In our extension of their experiment, participants

were asked to make trade-offs between higher (or lower) impacts of electricity generation on

climate change and a higher (or lower) electricity bill. As shown in Table 1(c), participants were

presented all pairs from 8 alternatives (28 pairs) with no repetitions. In this task, 97% of the

200 participants passed the attention check. Here our approach yielded seven clusters: five with

chain structures, and two with multiple cycles.
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Cl 1 (18%) Cl 2 (8%) Cl 3 (13%) Cl 4 (6%) Cl 5 (14%) Cl 6 (25%) Cl 7 (16%)

a) Expected adjacency matrix per cluster (Cl: Cluster)

b) Coefficients c) Model accuracy

Figure 6: Clustering results CO2 task. First row, weighted expected adjacency matrix in each
cluster for the CO2 task. We used a color scale to easy ease interpretation with adjacency matrices
colored from one in darker tones and zeros in lighter tones. We also present moon graphs to
explicitly differentiate preference structure. The proportion of the sample in each cluster is
presented last. Second row on left, coefficients for both attributes assuming a weighted additive
linear utility model with no intercepts (Vj = βbill ·Bill−βCO2 ·CO2). Given their similarities we
merged clusters 2 and 3; and clusters 5 and 6. Second row on right, model accuracy on 1,000
bootstrapped samples as more choices are observed from participants. Choice sets are order
according with their mutual observation with respect to a vector with cluster assignments.
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Figure 6a shows the expected adjacency matrices per cluster. Alternatives are arranged so a

lower triangular adjacency matrix indicates choices based strictly on electricity bill savings and

an upper triangular adjacency matrix indicates choices based strictly on CO2. As we observe

in Figure 6a, decision-makers tended to focus either on CO2, or the electricity bill. Decision-

makers in cluster 1 chose strictly based on a lower electricity bill. Decision-makers in cluster

4 chose only based on lowering CO2 emissions. Decision-makers in clusters 2, 3, 5 and 6

were willing to trade-off a higher bill for reductions in CO2 emissions. Almost 30% of the

sample has intransitive cycles in their preference structure in expectation, indicating some level of

incoherence. Decision-makers in cluster 7 showed multiple cycles and are clearly uncertain about

what they want. To model behavior in each cluster, we used a weighted additive linear utility

model with no intercept over both attributes (bill and CO2) as Vi = βBill ·Billi +βCO2 ·CO2i (see

Table 2(b) in the appendix section). In Figure 6b we present coefficient values for the weighted

additive linear utility model in each cluster for both bill and CO2. Clusters 1 and 7 are insensitive

to changes in CO2 with coefficients close to zero. Finally, Figure 5c shows again that a mixture

of multinomial logit models performs better than a pooled multinomial logit model, when a few

choices are used to assign cluster membership. In short, more than half the participants do not

have well-behaved preferences and are either using simplifying choice heuristics based on a

single attribute (clusters 1 and 4) or have intransitive preferences (clusters 3 and 7).

3.3 Classification of decision rules

To better understand the relationship between the clusters for each task, we use a hierarchical

clustering approach (Kemp, Tenenbaum, Griffiths, Yamada, & Ueda, 2006). We applied hier-

archical clustering using the Hamming distance between expected adjacency matrices as the

dissimilarity metric. As shown in Figure 7a for the transitivity task, the hierarchical clustering

sorts decision-makers according to the primary attribute they used to make their decisions,
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with clusters 1, 2, 3, 5 and 6 deciding based on probabilities and cluster 4 deciding based on

payoffs. Next, decision-makers varied on the degree to which they could discriminate between

the probabilities, which were shown only in graphical form (Birnbaum, 2011), where those in

clusters 1, 2, and 3 had high discrimination, and those in 5 and 6 had low discrimination. Those

with low discrimination also tended to have intransitive cycles in their preferences.

(a) Transitivity task (b) CO2 task

Figure 7: Hierarchical clustering on the expected adjacency matrices for each cluster in the
transitivity and CO2 tasks.

For the CO2 task (see Figure 7b), individuals either were “Greens” (clusters 4, 5 and 6),

focusing on CO2, or “Bills” (1, 2, 3 and 7), focusing on saving money. At the next level in

the hierarchy, decision-makers in clusters 2, 3, 4, and 6 tended to use a compensatory decision

rule (giving weight to both attributes), versus those in clusters 1, 4, and 7 who used a non-

compensatory decision rule (using only either CO2 or bill to make their choice). Lastly, some

individuals were uncertain about their preferences, as in cluster 7, who had intransitive cycles.
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4 Discussion

Policy decisions that rely on understanding the preferences of individuals, groups, and society

may benefit from preference models that allow heterogeneity in individual decision rules. Exist-

ing approaches require that those rules are known and specified ahead of time. In this work, we

use a novel strategy to discovery heterogeneity in decision rules automatically. We use graph

matching to develop a method of clustering decision-makers based on the content and structure

of their decision rules. By clustering decision-makers into groups with homogeneous preferences,

researchers can better test their models against choice patterns within each group, for example by

comparing utility maximization to a lexicographic semiorder. Knowledge of these groups also

improves prediction of the behavior of new decision-makers when only a few choices from those

decision-makers are available. The approach can aid policy analysis, by allowing subgroups with

heterogeneous preference content and structure to express the trade-offs that they are willing (or

not willing) to make. Further, the approach is not limited to preference analysis, and can be used

in any task where decision-makers must choose between two alternatives.

We explore the approach with a classic experiment of risky decisions, and a new policy-

relevant stated preference task. In the classic experimental design by Tversky, the transitivity

task, we find that the the vast majority of the sample uses a single attribute (up to noise) to

choose, where 65% of the sample chose only based on the probability of winning a gamble,

and 9% chose only based on the gamble’s payoff (Birnbaum & Gutierrez, 2007; Lichtenstein &

Slovic, 1971; Birnbaum & Gutierrez, 2007; Birnbaum, 2011), undermining the plausibility of

other more complex rules like expected value calculations (Brandstätter, Gigerenzer, & Hertwig,

2006; Gigerenzer & Goldstein, 1999; Slovic, 1975; Fishburn, 1971). The data are consistent

with a lexicographic order, where decision-makers use only one attribute unless there are exact

ties (Fishburn, 1971), rather than a lexicographic semiorder which allows for inexact ties within
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a just-noticeable-difference (Tversky, 1969). Surprisingly, even though decision-makers used

a simplifying choice rule, almost all of them had transitive preferences (Regenwetter, Dana, &

Davis-Stober, 2011), likely because a simplifying single-attribute lexicographic decision rule

makes consistency (and transitivity) a foregone conclusion. This is a surprising finding given

most of the literature using these stimuli finds intransitive decision-makers. What we find is that

there are small pockets of intransitive decision-makers (they are not choosing randomly according

to attention checks). The conclusion seems to be more balanced than previous literature suggests:

some people know what they want, many people disagree with each other, and a few are unsure

about what they want.

We also apply our method to a policy-relevant choice task, the CO2 task, where we asked

respondents to choose between savings on their electricity bill and CO2 emissions. We find

non-compensatory behavior in about 40% of the sample, with almost all of them (34%) unwilling

to pay some cost to avoid climate change. A naive approach that does not take non-compensatory

behavior into account, for example by fitting a single multinomial logit model (MNL) with two

attributes on the full sample, would lead to significantly distorted policy conclusions (McFadden,

1973, 1997). For example, willingness to pay corresponds to the marginal rate of substitution

(MRS) between an attribute k and the cost of each alternative MRSkc =
∂ui
∂xk

/∂ui
∂ci

. If a model

was fitted assuming the utility of each alternative is linear in its attributes, the function would

be Vi = −8.3 ·Bill− 4.5 ·CO2 on the whole sample, giving a willingness to pay (WTP) of

WT P = 30 · −4.5/− 8.3 = 16 % increment in the monthly electricity bill for a 30% percent

reduction in CO2 emissions. That is, the population is willing to pay to avoid CO2 emissions.

A very different picture emerges from our preference clusters, where many are unwilling to

make the trade-off implied by the marginal rate of substitution, or do not even have coherent

preferences that could be characterized by a utility function. Analysis of willingness to pay in

aggregate would imply trade-offs that much of the population is unwilling to make.
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Moreover, our method can improve choice prediction. In both experiments, predictive

accuracy increased around 10% when only a few choices were available to estimate mixing

probabilities. In Figures 5 and 6, using 1,000 bootstrapped samples from the original observations

for both the transitivity task and the CO2 task, a mixture of multinomial logit models for each

cluster with linear utility functions, with individual mixing probabilities conditional on the

observed choices, yields a higher accuracy than a pooled multinomial logit model. Accuracy

increases as more information is available to estimate cluster membership.

There are also several important limitations of our method. Clustering always has some

arbitrariness. For example, the number of dimensions to embed the dissimilarity matrices in

a lower dimensional space was defined using the elbow point of the loss function, a useful

heuristic (Goodfellow et al., 2016), but allowing for the number of dimensions to be determined

automatically by the data in the optimization process would be an important improvement (Côté

& Larochelle, 2016). The data requirements also present an important challenge. The number of

pairwise comparisons required to complete a tournament grows quadratically with the number of

alternatives, increasing the risk of decision-maker fatigue.

5 Conclusions

Under the premise that policy decisions ought to be based on trade-offs decision-makers would

make between different private or public goods (Arrow et al., 1996), a major challenge faced

by policy analysts is to identify decision makers that are not willing to make such trade-offs.

Respondents in our studies showed heterogeneous patterns of choice, with a large proportion not

willing to compromise. Our approach can identify those groups and uncover heterogeneity in

preference structure without requiring any prior knowledge of those structures. Practitioners will

be able to use this approach to classify decision-makers according to their preference content

and structure. This can inform decision-makers themselves through decision analysis, as well
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as help policy-makers better understand the welfare impacts of new policies, and design policy

interventions that meet the demands of the public.
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Appendix: Modeling results for each experiment
Table 2: Linear utility models per cluster. l(s): log-likelihood model with a single parameter,
l(EV): log-likelihood model expected value rule, P(p): proportion choosing the alternative with
a higher probability of winning, WTP: Willingness to pay. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

(a) Transitivity task

Cluster Content β̂ l(s) l(EV) P(p) N
1 Probs 10∗∗∗ -542 -621 87%∗∗∗ 26 (13%)
2 Probs 23∗∗∗ -473 -773 96%∗∗∗ 44 (22%)
3 Probs 111∗∗∗ -30 -717 100%∗∗∗ 59 (30%)
4 Payoff 3∗∗∗ -284 -382 7%∗∗∗ 18 (9%)
5 Probs 5∗∗∗ -558 -586 71%∗∗∗ 20 (10%)
6 Probs 0.3∗ -1,029 -1,029 54%∗∗∗ 33 (16%)

(b) CO2 task

Cluster Content β̂CO2 β̂Bill WTP N
1 Bills 1.5∗∗ -12.5∗∗∗ -0.04 37 (18%)
2 Bills -5.1∗∗∗ -9.1∗∗∗ 0.17 17 (8%)
3 Bills -7.9∗∗∗ -13.8∗∗∗ 0.17 26 (13%)
4 Greens −9.2∗∗∗ -3.4 0.81 12 (6%)
5 Greens -15.6∗∗∗ -20.4∗∗∗ 0.23 28 (14%)
6 Greens -27.9∗∗∗ -37.7∗∗∗ 0.22 50 (25%)
7 Cycles -0.2 -3.4∗∗∗ 0.02 30 (15%)

24



References
Aflalo, Y., Bronstein, A., & Kimmel, R. (2015). On convex relaxation of graph isomorphism.

Proceedings of the National Academy of Sciences, 112(10), 2942–2947.
Afriat, S. N. (1972). Efficiency estimates of production functions. International Economic

Review, 13, 568–598.
Alberini, A., Hunt, A., & Markandya, A. (2006). Willingness to pay to reduce mortality

risks: evidence from a three-country contingent valuation study. Environmental and Resource
Economics, 33(2), 251–264.

Anderson, J. R., & Lebiere, C. J. (2014). The atomic components of thought. Psychology Press.
Arai, K., & Barakbah, A. R. (2007). Hierarchical k-means: an algorithm for centroids initializa-

tion for k-means. Reports of the Faculty of Science and Engineering, 36(1), 25–31.
Arrow, K. J. (1951). Social choice and individual values. John Wiley Sons, Inc: New York.
Arrow, K. J., Cropper, M. L., Eads, G. C., Hahn, R. W., Lave, L. B., Noll, R. G., . . . others

(1996). Is there a role for benefit-cost analysis in environmental, health, and safety regulation?
Science, 272(5259), 221–222.

Babai, L., & Luks, E. M. (1983). Canonical labeling of graphs. In Proceedings of the fifteenth
annual acm symposium on theory of computing (pp. 171–183).

Bhatia, S. (2013). Associations and the accumulation of preference. Psychological Review,
120(3), 522–543.

Birnbaum, M. H. (2011). Testing mixture models of transitive preference: Comment on
regenwetter, dana, and davis-stober (2011). Psychological Review, 118(4), 675–683.

Birnbaum, M. H., & Gutierrez, R. J. (2007). Testing for intransitivity of preferences predicted by
a lexicographic semi-order. Organizational Behavior and Human Decision Processes, 104(1),
96–112.

Bouyssou, D., & Vincke, P. (2010). Binary relations and preference modeling. Decision-making
Process: Concepts and Methods, 49–84.

Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: making choices
without trade-offs. Psychological Review, 113(2), 409–432.

Brown, N., Park, S., Steinley, D., & Davis-Stober, C. P. (2018). Modeling between-subject
variability in decision strategies via statistical clustering: A p-median approach. Journal of
Behavioral Decision Making, 31(2), 250–264.

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive
approach to decision making in an uncertain environment. Psychological Review, 100(3),
432–459.

Butts, C. T., & Carley, K. M. (2005). Some simple algorithms for structural comparison.
Computational & Mathematical Organization Theory, 11(4), 291–305.

Coombs, C. H., & Kao, R. C. (1960). On a connection between factor analysis and multidimen-
sional unfolding. Psychometrika, 25(3), 219–231.

Côté, M.-A., & Larochelle, H. (2016). An infinite restricted boltzmann machine. Neural
computation, 28(7), 1265–1288.

25



Crump, M. J., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating amazon’s mechanical
turk as a tool for experimental behavioral research [Journal Article]. PloS one, 8(3), e57410.

Davis, R. L. (1954). Structures of dominance relations. Bulletin of Mathematical Biology, 16(2),
131–140.

Davis-Stober, C. P. (2009). Analysis of multinomial models under inequality constraints:
Applications to measurement theory. Journal of Mathematical Psychology, 53(1), 1–13.

Fischhoff, B. (2005). Cognitive processes in stated preference methods. Handbook of environ-
mental economics, 2, 937–968.

Fishburn, P. C. (1971). A study of lexicographic expected utility. Management Science, 17(11),
672–678.

Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research
Logistics (NRL), 3(1-2), 95–110.

Gigerenzer, G., & Goldstein, D. G. (1999). Betting on one good reason: Take the best and its
relatives. In G. Gigerenzer, P. Todd, & ABC Research Group (Eds.), Simple heuristics that
make us smart. (pp. 75–95). Oxford University Press, New York.

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart [Book]. Oxford
University Press, USA.

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2), 133–151.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Greene, W. H. (2012). Econometric analysis. Granite Hill Publishers.
Greene, W. H., & Hensher, D. A. (2003). A latent class model for discrete choice analysis:

contrasts with mixed logit. Transportation Research Part B: Methodological, 37(8), 681–698.
Hamming, R. W. (1950). Error detecting and error correcting codes. Bell Labs Technical Journal,

29(2), 147–160.
Hammitt, J. K. (2000). Valuing mortality risk: Theory and practice. Environmental Science and

Technology, 34, 1396–1400.
Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.
Helveston, J. P., Liu, Y., Feit, E. M., Fuchs, E., Klampfl, E., & Michalek, J. J. (2015). Will

subsidies drive electric vehicle adoption? measuring consumer preferences in the us and china.
Transportation Research Part A: Policy and Practice, 73, 96–112.

Hensher, D. A., Rose, J. M., & Greene, W. H. (2015). Applied choice analysis. Cambridge
University Press.

Herriges, J. A., & Kling, C. L. (1999). Nonlinear income effects in random utility models.
Review of Economics and Statistics, 81(1), 62–72.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. science, 313(5786), 504–507.

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an s4 package for kernel
methods in r. Journal of statistical software, 11(9), 1–20.

Kemp, C., Tenenbaum, J. B., Griffiths, T., Yamada, T., & Ueda, N. (2006). Learning systems

26



of concepts with an infinite relational model. In Proceedings of the national conference on
artificial intelligence (Vol. 21, p. 381).

Kevin, M. (2012). Machine learning: a probabilistic perspective. The MIT press, Cambridge,
Massachusetts.

Koopmans, T. C., & Beckmann, M. (1957). Assignment problems and the location of economic
activities. Econometrica: journal of the Econometric Society, 53–76.

Lichtenstein, S., & Slovic, P. (1971). Reversals of preference between bids and choices in
gambling decisions. Journal of experimental psychology, 89(1), 46.

Liu, Z.-Y., Qiao, H., Jia, L.-H., & Xu, L. (2014). A graph matching algorithm based on concavely
regularized convex relaxation. Neurocomputing, 134, 140–148.

Livi, L., & Rizzi, A. (2013). The graph matching problem. Pattern Analysis and Applications,
16(3), 253–283.

Lucas, A. (2014). amap: Another multidimensional analysis package. http://CRAN. R-project.
org/package= amap.

Lyzinski, V., Fishkind, D. E., Fiori, M., Vogelstein, J. T., Priebe, C. E., & Sapiro, G. (2016).
Graph matching: Relax at your own risk. IEEE transactions on pattern analysis and machine
intelligence, 38(1), 60–73.

Marschak, J. (1959). Binary choice constraints on random utility indicators (Tech. Rep.). Cowles
Foundation for Research in Economics, Yale University.

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka
(Ed.), Frontiers in econometrics (pp. 105–142). Academic Press: New York.

McFadden, D. (1997). Modeling the choice of residential location. In J. Quigley (Ed.), The
economics of housing (Vol. 1, pp. 531–552).

McFadden, D. (1999). Computing willingness-to-pay in random utility models. In J. Moore,
R. Reizman, & J. Melvin (Eds.), Trade: Theory and econometrics (pp. 253–274). Routledge:
London.

McFadden, D. (2001). Economic choices. American economic review, 91(3), 351–378.
McFadden, D., & Train, K. E. (2000). Mixed mnl models for discrete response. Journal of

applied Econometrics, 447–470.
Min, J., Azevedo, I. L., Michalek, J., & de Bruin, W. B. (2014). Labeling energy cost on light

bulbs lowers implicit discount rates. Ecological Economics, 97, 42–50.
Moon, J. W. (2015). Topics on tournaments in graph theory. Courier Dover Publications.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge

University Press.
Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2011). Transitivity of preferences. Psycholog-

ical Review, 118(1), 42–56.
Regenwetter, M., Davis-Stober, C. P., Lim, S. H., Guo, Y., Popova, A., Zwilling, C., . . . Messner,

W. (2014). Qtest: Quantitative testing of theories of binary choice. Decision, 1(1), 2.
Roberts, K. W. (1980). Interpersonal comparability and social choice theory. The Review of

Economic Studies, 47(2), 421–439.

27



Sergi, B., Davis, A., & Azevedo, I. (2018). The effect of providing climate and health information
on support for alternative electricity portfolios. Environmental Research Letters, 13(2), 024026.

Simon, H. A. (1972). Theories of bounded rationality. Decision and Organization, 1(1),
161–176.

Singh, A., Yadav, A., & Rana, A. (2013). K-means with three different distance metrics.
International Journal of Computer Applications, 67(10).

Slovic, P. (1975). Choice between equally valued alternatives. Journal of Experimental
Psychology: Human Perception and Performance, 1(3), 280.

Small, K. A., & Rosen, H. S. (1981). Applied welfare economics with discrete choice models.
Econometrica, 49(1), 105–130.

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set
via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2), 411–423.

Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76(1), 31-48.
Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice.

Science, 211(4481), 453–458.
Varian, H. R. (1983). Non-parametric tests of consumer behaviour. The review of economic

studies, 50(1), 99–110.
Viscusi, W. K., & Aldy, J. E. (2003). The value of a statistical life: a critical review of market

estimates throughout the world. Journal of risk and uncertainty, 27(1), 5–76.
Vogelstein, J. T., Conroy, J. M., Lyzinski, V., Podrazik, L. J., Kratzer, S. G., Harley, E. T., . . .

Priebe, C. E. (2015). Fast approximate quadratic programming for graph matching. PLOS one,
10(4), e0121002.

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior (Vol. 60)
[Book]. Princeton: Princeton university press.

Wang, Y., Yao, H., & Zhao, S. (2016). Auto-encoder based dimensionality reduction. Neuro-
computing, 184, 232–242.

Williams, H. (1977). On the formation of travel demand models and economic evaluation
measures of user benefit. Environment and planning A, 9(3), 285–344.

28


